Что приводит к увеличению радиусов колец ньютона. С помощью колец ньютона. Функция рассеяния точки

Цель работы: ознакомиться с явлением интерференции на примере колец Ньютона, опытным путем определить радиус кривизны линзы.

1.1 Краткие теоретические сведения

Распространение света в пространстве, а также часть явлений, связанных с взаимодействием света и вещества, объясняются волновой теорией. В соответствии с ней свет есть электромагнитные волны, и отличается от других электромагнитных волн только длиной. В световой волне происходят колебания векторов напряженности электрического и магнитного полей. Эти вектора перпендикулярны друг другу, и оба они перпендикулярны направлению распространения света. Как правило, рассматриваются колебания только напряженности электрического поля, ее называют световым вектором. Напряженность магнитного поля отбрасывается, поскольку магнитное поле практически не взаимодействует с веществом.

Явление интерференции света возникает при наложении двух или большего числа световых волн и заключается в том, что интенсивность результирующей волны не равняется сумме интенсивностей волн, которые накладываются. В одних точках пространства интенсивность оказывается большей, чем сумма, в других – меньшей, т.е. возникает система максимумов и минимумов интенсивности, которая называется интерференционной картиной. Необходимым условием интерференции волн является их когерентность. Необходимо также, чтобы колебания светового вектора происходили в одном направлении, или в близких направлениях.

Когерентными называются волны, которые в каждой точке пространства создают колебания с постоянной разностью фаз. Пусть колебания светового вектора первой волны описываются формулой E 1 =A 1 cos(wt+j 1), а второй волны - E 2 =A 2 cos(wt+j 2). В соответствии с принципом суперпозиции для электрического поля световой вектор результирующей волны по величине будет равен сумме Е 1 и Е 2 , он будет колебаться по гармоническому закону, квадрат амплитуды его колебаний

Интенсивность световой волны пропорциональна среднему квадрату амплитуды колебаний светового вектора. Для когерентных волн все величины в правой части формулы (1.1) постоянны, тогда интенсивность результирующей волны

В зависимости от разности фаз колебаний третье слагаемое формулы (1.2) может принимать значения от (при j 2 -j 1 =(2k+1)p, k=0, 1, 2, …) до (при j 2 -j 1 =2kp, k=0, 1, 2, …). В первом случае наблюдается минимум интенсивности результирующей волны, во втором – максимум.

Начальные фазы колебаний j 1 и j 2 в каждой точке определяются расстояниями, которые проходят волны l 1 и l 2 , т.е. расстояниями от этой точки до источников когерентных световых волн.

где λ – длина волны. Тогда разность фаз колебаний


Тут - разность хода волн, которые накладываются в данной точке. Эта величина полностью определяет результат интерференции, то есть возникновение в точке максимума или минимума интенсивности света. Условие возникновения максимума

условие возникновения минимума

Наблюдение показывает, что при наложении света от двух независимых источников интерференция не происходит, интенсивность света во всех точках равняется сумме интенсивностей. Причина этого заключается в том, что свет от любого источника, кроме лазера, состоит из цугов волн, которые независимо излучаются отдельными атомами. Время излучения одного атома имеет порядок величины 10 -8 с. В результате этого в световой волне происходят через краткие промежутки времени случайные изменения начальной фазы колебаний светового вектора, изменяется также случайным образом направление колебаний. Время, в течение которого начальная фаза колебаний остается неизменной, называется временем когерентности и обозначается τ ког. Очевидно, что τ ког <<10 -8 с. Лишь в течение этого времени сохраняется неизменной интерференционная картина при наложении света от двух независимых источников, наблюдать ее невозможно.

В лазерах излучение отдельных атомов вынужденное, по своим свойствам оно приближается к монохроматической волне. Но полная монохроматичность не достигается, частоты излучения принимают различные значения внутри интервала Dw. Различия в частотах приводят к появлению разности фаз, которая увеличивается со временем. Такие волны могут оставаться когерентными только на протяжении времени когерентности τ ког =2p/Dw. Для лазеров эта величина не превышает 10 -5 с, наблюдение интерференции при наложении излучения двух лазеров также невозможно.

Две когерентные световые волны для наблюдения интерференции можно получить раздели каким-либо образом одну световую волну. Если две части одной световой волны снова наложить друг на друга, возникает интерференционная картина. При этом разность хода волн от точки разделения до точки наложения не должна превышать расстояние, которое проходит свет за время когерентности l ког =с τ ког. Величина l ког называется длиной когерентности. За время τ ког излучение перестает быть когерентным самому себе, а значит части излучения одного источника, разделенные расстоянием большим, чем l ког, не когерентны.

Существует много способов разделения излучения одного источника света на две части. В опыте Юнга используется прохождение света через два малых отверстия в непрозрачном экране. Зеркала Френеля – два плоских зеркала, расположенных под углом, немногим меньшим, чем 180°. Они отражают свет от одного источника на экран, создавая в каждой точке экрана наложение двух когерентных волн. Эта же цель достигается с помощью бипризмы Френеля, две когерентные волны возникают вследствие преломления света двойной призмой. При наблюдении интерференции всегда стремятся уменьшить интервал частот Dw, в котором находятся частоты интерферирующих волн. Для этого свет пропускают через светофильтр.

Простейшим опытом, при котором наблюдается интерференция, является отражение света от тонкой пленки (см. рисунок 1.1). Свет, который прошел через светофильтр, направляется на верхнюю поверхность пленки, угол падения его α. Этот свет частично отражается от поверхности пленки, частично преломляется и проходит внутрь вещества. Угол преломления его β, n – показатель преломления вещества пленки. Преломленный свет вновь частично отражается от нижней поверхности пленки и выходит через верхнюю поверхность, накладываясь на свет, отраженный от верхней поверхности. Таким образом, происходит разделение одной волны на две с дальнейшим наложением их. Оптическая разность хода двух волн

Оптическая разность хода получается из геометрической разности путем умножения последней на показатель преломления n . Необходимость этого связана с отличием длины световой волны в веществе λ от длины волны в воздухе λ 0 . Длина волны равняется произведению периода колебаний и скорости распространения волны, отсюда λ 0 /λ=(c T)/(v T)=c /v =n , то есть λ в n раз больше, чем λ 0 . Разность хода волн сравнивается с длиной волны, этих длин на путь в середине пленки приходится в n раз больше. Вычитание λ 0 /2 обусловлено изменением фазы колебаний в световой волне при отражении от границы более плотной среды. В точке отражения фаза колебаний отраженной волны отличается от фазы падающей волны на p, что соответствует дополнительному изменению оптической разности хода на λ 0 /2. Данное явление носит название «потеря полуволны». При отражении волны от границы менее плотной среды, то есть на нижней поверхности пленки такое изменение фазы колебаний не происходит.

При неизменной толщине пленки разность хода интерферирующих волн может отличаться для различных мест пленки из-за отличия углов падения α. Точки, для которых угол α принимает близкие значения соответствующие условиям возникновения максимума (1.3) и минимума (1.4) образуют полосы. Визуально они наблюдаются как темные и светлые полосы на поверхности пленки, называется такая интерференционная картина полосами равного наклона. При падении на тонкую пленку плоской волны угол падения во всех точках одинаковый, интерференция в этом случае приводит к зависимости интенсивности отраженной волны от толщины пленки h. Если толщина пленки в разных местах не одинакова, точки, для которых выполняются условия возникновения максимума (1.3) и минимума (1.4) образуют линии. Вдоль этих линий наблюдаются темные и светлые полосы, которые называются полосами равной толщины.

Исаак Ньютон заметил странное явление: если положить обычную плосковыпуклую линзу неровной стороной на гладкую горизонтальную поверхность зеркала, то сверху можно увидеть кольца, расходящиеся от точки соприкосновения. Что это и почему так происходит, великий ученый объяснить не смог. Понял причину возникновения колец Ньютона гораздо позже такой же гениальный Юнг. Опираясь на новые открытия в области оптики, он объяснил это явление с помощью волновой теории света.

Как все это происходит

Каждая волна имеет собственную частоту колебания, а также верхние и нижние фазы колебания. Если два потока монохромного света (одинаковой частоты и ) совпадают фазами, то свет, который можно увидеть, будет в два раза ярче, сильнее. Если они не совпадают на полволны, то гасят друг друга, и тогда не видно ничего. Кольца – это чередование кругов усиления и поглощения световых волн.

Как же они образуются? Поток световых волн (относительно параллельных) падает перпендикулярно на плоскую поверхность линзы, проходя через нее. Часть волн отражается от нижней выпуклой поверхности, часть проходит дальше и отражается от горизонтальной плоскости зеркала. Стоит отметить, что лучи, отражаясь от линзы, уже не возвращаются пути (угол падения равен углу отражения).

Отражаясь и возвращаясь своим новым путем, они сливаются с теми потоками света, которые дошли до зеркала и вернулись такими же перпендикулярными. То есть в момент встречи «отстающих» волн с теми, которые отразились от линзы, может случиться как усиление (совпадение фаз), так и погашение (поглощение амплитуд). Переход между кольцами постепенный и увеличивается по мере удаления от центра, так как «лишнее» расстояние увеличивается постепенно от точки соприкосновения до края линзы.

Кольца Ньютона в повседневной жизни

Используя этот эффект, ученые научились легко измерять радиус кривизны поверхности, показатели преломления среды и длины волн световых лучей. Сегодня все эти достижения с успехом используются в науке и производстве.

В можно получить не только кольца Ньютона, но и настоящую круглую из них. Достаточно закрепить на стене белое полотно, затем на расстоянии метра от экрана укрепить систему из плосковыпуклой линзы и пластины. Они должны прикасаться друг к другу в самом центре линзы. Используйте направленный поток белого света (диапроектор, лазерная указка, фонарик), направляя его через импровизированный оптический прибор на вертикальный экран. Радужные окружности на стене - это и есть круги Ньютона.

Частный случай полос равной толщины - кольца Ньютона - наблюдаются, если плосковыпуклую линзу поместить на плоскопараллельную стеклянную пластинку (рис 3).

Если на линзу падает пучок монохроматического света, то световые волны, отражённые от воздуха в точке А и от стекла в точке В (т.е. от верхней и нижней границ воздушной прослойки), оказываются когерентными и интерферируют. Волна, отраженная от плоской поверхности линзы, не когерентна с ними и дает лишь равномерную засветку. Точки, для которых толщина воздушного зазора одинакова, располагаются на окружностях, поэтому интерференционная картина имеет вид чередующихся концентрических темных и светлых колец.

Рис.3. Схема возникновения колец Ньютона

Так как отражение световой волны в точке В происходит от стекла (оптически более плотной среды), то оптическая длина пути второго луча в точке А составит АВ + ВА + λ/2. Оптическая длина пути первого луча в точке А равна нулю. Поэтому

Δ опт = L 2 - L 1 = АВ + ВА + λ/2 = 2d + λ / 2

Тёмные кольца образуются там, где оптическая разность хода равна нечётному числу полуволн:

Δ опт = 2d + λ /2 = (2m + 1) λ /2,

т.е. при толщине зазора

d = m λ /2 , (8)

где m = 0,1,2,3... - номер кольца.

В центре интерференционной картины находится темный круг, соответствующий минимуму нулевого порядка. Если r m - радиус темного кольца под номером m, то из треугольника AОС (см. рис.3) имеем:

r m 2 = R 2 - (R - d,) 2 = 2Rd – d 2 , (9)

где R - радиус кривизны линзы. Полагая величину воздушного зазора в месте возникновения колец малой, (т.е. пренебрегая d 2 по сравнению с 2Rd), получим:

Подставляя сюда (8), получим

r m 2 = Rmλ (10)

Из этой формулы видно, что зная длину волны используемого света радиус кривизны линзы можно найти путем измерения радиуса кольца Ньютона и определения его порядкового номера.

Использование формулы (10) для определения радиуса кривизны может привести к ошибке, т.к. в точке соприкосновения линзы и стеклянной пластинки возможна деформация, как линзы, так и пластинки, сравнимая по величине с длиной волны света. Поэтому результаты, полученные без учета этого факта, являются неточными.

Величина воздушного зазора оказывается меньше теоретической величины, полученной из рис.3, на величину суммарной деформации стеклянной пластинки и линзы δ (рис.4). Учитывая это, в формулу (9) вместо толщины воздушного зазора d необходимо подставить сумму толщины воздушного зазора и величины суммарной деформации линзы и стеклянной пластинки (d + δ):

r m 2 = R 2 – 2 .

Пренебрегая малой величиной (d+ δ) 2 , получаем:

r m 2 = 2R(d + δ)

Рис.4. Учет деформации линзы и стеклянной пластинки

Учитывая (13), получим следующую формулу, для радиусов темных колец Ньютона с учетом суммарной деформации:

r m 2 = Rmλ + 2Rδ (11)

Экспериментально удобнее вместо радиуса кольца Ньютона измерять его диаметр (D m). В этом случае формула (11) будет иметь вид:

D m 2 = 4Rmλ + 8Rδ, (12)

Из (12) видно, что квадрат диаметра кольца Ньютона D m 2 пропорционален порядковому номеру кольца m. Если построить график зависимости D m 2 от m, то экспериментальные точки должны лежать на одной прямой, и тангенс угла наклона этой прямой tgα будет равен 4Rλ. Таким образом, для нахождения радиуса кривизны линзы необходимо, используя график зависимости D m 2 = f(m), найти

, (13)

где m 1 , m 2 номера колец,

D 2 m1 и D 2 m2 – их диаметры,

R=tgα/4λ. (14)

В центре линзы наблюдается круглое темное пятно, соответствующее нулевой толщине воздушного зазора в области деформации. Измерив диаметр центрального темного пятна (т.е. темного кольца, номер которого m=0), из (12) можно найти величину суммарной деформации линзы и стеклянной пластинки по формуле.

Интерференция

Интерференцией света называют пространственное перераспределение светового потока при наложении двух или нескольких когерентных световых волн, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности (интерференционная картина).

Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде, хотя мыльный раствор и масло бесцветны.

Световые волны частично отражаются от поверхности тонкой пленки, частично проходят в нее. На второй границе пленки вновь происходит частичное отражение волны.

Волновые фронты, распространяющиеся от двух краев отверстия, пересекаются между собой. Там, где встречаются два гребня волны, яркость увеличивается, но там, где гребень встречается с впадиной, волны гасят друг друга, создавая темные области. В результате вместо простого изображения отверстия получается ряд чередующихся светлых и темных полос. Это явление называется интерференцией.

Интерференция возникает, когда две волны с одинаковой
длиной волны (1, 2) Движутся по одному пути. Они взаимо-
действуют, образуя новую волну (3). Если волны совпадают
по фазе(А), то интенсивность результирующей волны оказы-
вается выше, чем каждой из них. Если волны слегка сдвинуты
по фазе (В), то интенсивность результирующей волны близка
к интенсивности исходных волн. Если исходные волны нахо-
дятся в противофазе (B), то они полностью гасят друг друга

Световые волны, отраженные двумя поверхностями тонкой пленки, распространяются в одном направлении, но проходят разные пути.

При разности хода, равной четному числу длин полуволн наблюдается интерференционный максимум.

При разности хода, равной нечетному числу длины полуволн наблюдается интерференционный минимум.

Когда выполняется условие максимума для оной длины световой волны, то оно не выполняется для других волн.

Поэтому освещённая белым светом тонкая цветная прозрачная пленка кажется окрашенной. Явление интерференции в тонких пленках применяется для контроля качества обработки поверхностей, для просветления оптики

При освещении одного и того же участка светом различных источников интерференционные явления не наблюдаются.

Для получения устойчивой интерференционной картины необходимо обеспечить когерентность, или согласование, двух систем волн. Источники должны испускать когерентные волны, т.е. волны, обладающие одним периодом и неизменной разностью фаз на протяжении времени, достаточного для наблюдения.

В независимых источниках свет испускают различные атомы, условия, излучения которых быстро и беспорядочно меняются.

Интерференционная картина, получаемая от независимых источников сохраняется неизменной очень короткое время, а затем сменяется другой, с иным расположением максимумов и минимумов. Так как время, необходимое для наблюдения, измеряется, как сказано, тысячными и более долями секунды, то за это время интерференционные картины успеют смениться миллионы раз. Мы наблюдаем результат наложения этих картин. Такое наложение размывает картину

Если луч света расщепить на два, а затем заставить их соединиться вновь, то между ними возникнет интерференция - при условии, что пути, пройденные лучами, различны. Гребни и впадины двух волновых фронтов могут оказаться «не в фазе» (не совпадать точно), но световые лучи все равно про взаимодействуют. Такие интерференционные эффекты создаются двумя очень близко расположенными поверхностями, например тонкими пленками или двумя тесно сжатыми пластинками стекла, и приводят к появлению окрашенных полос. Радужные цвета, видимые в оперении птиц и на крыльях некоторых бабочек, вызваны явлением интерференции; тонкая структура крыла или пера образует своего рода дифракционную решетку или тонкую пленку.
Поскольку интерференция вызывается малым различием в величинах путей, пройденных волнами одной и той же длины, этот эффект можно использовать для обнаружения очедь малых изменений длины. Для этой цели служат приборы, называемые интерферометрами.

Б
Тонкие пленки, такие, как мыльные пузыри или нефтяные пятна на воде, обычно сияют всеми
цветами радуги. Часть света, проходящего через пленку, отражается от ее внутренней
поверхности и интерферирует с проходящим светом. Проходя пути различной длины, волны,
соответствующие некоторым цветам, на (А) – красному, оказываются в фазе и усиливают друг
друга. Другие волны, на (В) – показано синим, полностью гасят друг друга и потому невидимы.

Идеальным источником света является квантовый генератор (лазер), по своей природе является когерентным.

Дифракция

При прохождении света через малое круглое отверстие на экране вокруг цетрального светлого пятна наблюдаются чередующиеся темные и светлые кольца; если свет проходит через узкую щель, то получается картина из чередующихся светлых и темных полос.

Явление отклонения света от прямолинейного направления распространения при прохождении у края преграды называют дифракцией света.

Дифракция объясняется тем, что световые волны, приходящие в результате отклонения из разных точек отверстия в одну точку на экране, интерферируют между собой.

Дифракция света используется в спектральных приборах, основным элементом которых является дифракционная решетка.

Дифракционная решетка представляет собой прозрачную пластинку с нанесенной на ней системой параллельных непрозрачных полос, расположенных на одинаковых расстояниях друг от друга.

Пусть на решетку падает монохроматический определенной длины волны свет. В результате дифракции на каждой щели свет распространяется не только в первоначальном направлении, но и по всем другим направлениям. Если за решеткой поставить собирающую линзу, то на экране в фокальной плоскости все лучи будут собираться в одну полоску

Параллельные лучи, идущие от краев соседних щелей, имеют разность хода дельта=d*sinφ, где d-постоянна решетки – расстояние между соответствующими краями соседних щелей, называемое периодом решетки, φ – угол отклонения световых лучей от перпендикуляра к плоскости решетки.

При разности хода, равной целому числу длин волн d*sinφ = k*λ, наблюдается интерференционный максимум для данной длины волны.

Условие интерференционного максимума выполняется для каждой длины волны при своем значении дифракционного угла φ.

В результате при прохождении через дифракционную решетку пучок белого света разлагается в спектр.

Угол дифракции имеет наибольшее значение для красного света, так как длина волны красного света больше всех остальных в области видимого света. Наименьшее значение угла дифракции для фиолетового света.

каждый луч света распространяется прямолинейно, что достигается непрерывным рядом волн, несущих колебательное движение в пространстве. Колебания всех волн, исходящих из источника света, складываются, создавая сферические волновые фронты, состоящие из чередующихся пиков и впадин энергии.
Тень, отбрасываемая каким-либо предметом, редко имеет четкие границы. Это объясняется тем, что источник света обычно не является точкой, а имеет некоторые размеры. Если источник бесконечно мал, то следовало бы ожидать, что он даст абсолютно резкую тень, поскольку, как считается, световые лучи распространяются прямолинейно. Однако на самом деле волны огибают край предмета – этот эффект называется дифракцией. Когда световые волны попадают на край предмета, ближайшие к нему точки начинают действовать как источники световых волн, распространяющихся во всех направлениях, – в результате световые лучи загибаются за край предмета. Длина волны света столь мала, что дифракцию трудно обнаружить на больших предметах, но она становится весьма заметной при прохождении света через малые отверстия, размеры которых сравнимы с длиной волны. Это происходит в дифракционной решетке, где свет проходит через очень узкие щели.

Дифракция возникает, когда световая
волна огибает край предмета. Обычно
этот эффект очень слаб. Однако если
световые волны проходят через отверс-
тие, размеры которого сравнимы с длиной
волны (для видимого света около
0,000055 см), то дифракция становится
наблюдаемой. Световые волны распростра-
няются от краев отверстия как от источ-
ников, и на экране образуется картина
чередующихся светлых и темных полос.

Дифракционная решетка представляет собой
сетку из тонких близко лежащих штрихов.
Когда через неё пропускают белый свет,
различные его составляющие отклоняются
под разными углами и расщепляются на сово-
купность цветов.

Принцип Гюйгенса:

Каждую точку среды, которой достигла волна, можно рассматривать как источник вторичных сферических волн, распространяющихся со скоростью, свойственной среде. Огибающая поверхность, то есть поверхность, касающаяся всех сферических вторичных волокон в том положении, которого они, достигнут к моменту времени t, и представляет собой волновой фронт в этот момент.

Кольца Ньютона

Ко́льца Нью́тона - кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину

Интерференционная картина в виде концентрических колец (колец Ньютона) возникает между поверхностями одна из которых плоская, а другая имеет большой радиус кривизны (например, стеклянная пластинка и плосковыпуклая линза). Исаак Ньютон исследовав их в монохроматическом и белом свете обнаружил, что радиус колец возрастает с увеличением длины волны (от фиолетового к красному)

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет - это волны. Рассмотрим случай, когда монохроматическая волна падает почти перпендикулярно на плосковыпуклую линзу.

Пример колец Ньютона

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло - воздух, а волна 2 - в результате отражения от пластины на границе воздух - стекло. Эти волны когерентны, то есть у них одинаковые длины волн, а разность их фаз постоянна. Разность фаз возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

Max, где - любое целое число, - длина волны.

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.

- min, где - любое целое число, - длина волны.

Для учета того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют не разность хода, а оптическую разность хода. Разность оптических длин пути называется оптической разностью хода.

Оптическая длина пути,

Оптическая разность хода.

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на , этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном - эллипсы.

Радиус k -го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:

R - радиус кривизны линзы;

k = 1, 2, …;

λ - длина волны света в вакууме;

n - показатель преломления среды между линзой и пластинкой.

Функция рассеяния точки

Основным элементом при образовании изображения любого объекта являетсяизображение точки . Однако оптическая система никогда не изображает точку в виде точки . (А может прямая не прямая, а квадрат - не квадрат?) С одной стороны этому препятствуют аберрации оптической системы, с другой, - волновая природа света. Действие этих факторов приводит к тому, что изображение точки оказывается нерезким, расплывчатым. Мелкая структура объектов передается неправильно: изображения двух очень близко расположенных точек сливаются в одно пятно; изображения решеток сливаются в серый фон и т.п. По этим сведениям получают грубое качественное представление об изобразительных свойствах объектива.

Функция рассеяния точки (ФРТ, point spread function, PSF) - это функция, описывающая зависимость распределения освещенности от координат в плоскости изображения, если предмет - это светящаяся точка в центре изопланатической зоны (Условие изопланатизма : при смещении точки ее изображение тоже смещается на пропорциональную величину , где V - обобщенное увеличение).

Теория дифракции показывает, что даже при совершенном (безаберрационном) объективе изображение точки имеет вид некоторого светлого пятна, обладающего определенными габаритами и характерным распределением энергии в нем. Пятно имеет центральный максимум освещенности (диск Эри ), постепенно снижающийся до нуля, образуя вокруг центрального максимума темное кольцо. Концентрично к темному кольцу располагается светлое кольцо. Посмотрите на изображение в начале поста.

Безаберационная функция рассеяния точки симметрична относительно оптической оси. Центральный максимум содержит 83.8% всей энергии (его высота равна единице), первое кольцо - 7.2% (высота 0.0175), второе 2.8% (высота 0.0045), третье 1.4% (высота 0.0026), четвертое 0.9%. Общий вид распределения интенсивности функции рассеяния точки (картину Эри ) вы видите на рисунке.

Центральный максимум ФРТ называется диском Эри (Airy). Диаметр диска Эри в реальных координатах на изображении:

Где - апертура осевого пучка.

Диск Эри в общем случае может быть не круглым, если меридиональная и сагиттальная апертуры различны.

На функцию рассеяния точки влияет неравномерность пропускания по зрачку. Если пропускание уменьшается к краям зрачка, то центральный максимум ФРТ расширяется, а кольца исчезают. Если пропускание увеличивается к краям зрачка, то центральный максимум сужается, а интенсивность колец увеличивается. Эти изменения по-разному влияют на структуру изображения сложного объекта, и, в зависимости от требований, используются различные функции пропускания, "накладываемые" на область зрачка. Это явление называется аподизацией.

На рисунке вы видите: слева -- функция пропускания по зрачку; справа -- функция рассеяния точки.

В форме колец, расположенных концентрически вокруг точки касания двух сферич. поверхностей либо плоскости и сферы. Впервые описаны в 1675 И. Ньютоном. Интерференция света происходит в тонком зазоре (обычно воздушном), разделяющем соприкасающиеся поверхности; этот зазор играет роль тонкой плёнки (см. Оптика тонких слоев ).Н.к. наблюдаются и в проходящем, и - более отчётливо - в отражённом свете. При освещении монохроматич. светом длины волны Н. к. представляют собой чередующиеся тёмные и светлые полосы (рис. 1). Светлые возникают в местах, где разность фаз между прямым и дважды отражённым лучом (в проходящем свете) или между лучами, отражёнными от обеих соприкасающихся поверхностей (в отражённом свете), равна(п = 1, 2, 3, ...) (т. е. разность хода равна чётному числу полуволн). Тёмные кольца образуются там, где разность фаз равна Разность фаз лучей определяется толщиной зазора с учётом изменения фазы световой волны при отражении (см. Отражение света) . Так, при отражении от границы воздух - стекло фаза меняется на а при отражении от границы стекло - воздух фаза остаётся неизменной. Поэтому в случае двух стеклянных поверхностей (рис. 2), с учётом различий в условиях отражения от ниж. и верх. поверхностей зазора (потеря полуволны), т -етёмное кольцо образуется, если т. е. при толщине зазора Радиус r т т -го кольца определяется из треугольника А-О-С:

Рис. 1. Кольца Ньютона в отражённом свете.

Рис. 2. Схема образования колец Ньютона: О - точка касания сферы радиуса R и плоской поверхности; - толщина воздушного зазора в области образования кольца радиуса r m .

Откуда для тёмного m-го кольца r т = Это соотношение позволяет с хорошей точностью определятьпо измерениям r т . Если известна, Н. к. можно использовать для измерения радиусов поверхностей линз и контроля правильности формы сферич. и плоских поверхностей. При освещении немоно-хроматич. (напр., белым) светом Н. к. становятся цветными. Наиб. отчётливо Н. к. наблюдаются при малой толщине зазора (т. е. при использовании сферич. поверхностей больших радиусов).

В продолжение темы:
По именам

День учителя считается профессиональным праздником работников в сфере образования. В этот замечательный день ученики поздравляют своих учителей, дарят им цветы и конфеты,...

Новые статьи
/
Популярные